Arabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy.

نویسندگان

  • Eric M Engstrom
  • Carl M Andersen
  • Juliann Gumulak-Smith
  • John Hu
  • Evguenia Orlova
  • Rosangela Sozzani
  • John L Bowman
چکیده

Maintenance of indeterminacy is fundamental to the generation of plant architecture and a central component of the plant life strategy. Indeterminacy in plants is a characteristic of shoot and root meristems, which must balance maintenance of indeterminacy with organogenesis. The Petunia hybrida HAIRY MERISTEM (HAM) gene, a member of the GRAS family of transcriptional regulators, promotes shoot indeterminacy by an undefined non-cell-autonomous signaling mechanism(s). Here, we report that Arabidopsis (Arabidopsis thaliana) mutants triply homozygous for knockout alleles in three Arabidopsis HAM orthologs (Atham1,2,3 mutants) exhibit loss of indeterminacy in both the shoot and root. In the shoot, the degree of penetrance of the loss-of-indeterminacy phenotype of Atham1,2,3 mutants varies among shoot systems, with arrest of the primary vegetative shoot meristem occurring rarely or never, secondary shoot meristems typically arresting prior to initiating organogenesis, and inflorescence and flower meristems exhibiting a phenotypic range extending from wild type (flowers) to meristem arrest preempting organogenesis (flowers and inflorescence). Atham1,2,3 mutants also exhibit aberrant shoot phyllotaxis, lateral organ abnormalities, and altered meristem morphology in functioning meristems of both rosette and inflorescence. Root meristems of Atham1,2,3 mutants are significantly smaller than in the wild type in both longitudinal and radial axes, a consequence of reduced rates of meristem cell division that culminate in root meristem arrest. Atham1,2,3 phenotypes are unlikely to reflect complete loss of HAM function, as a fourth, more distantly related Arabidopsis HAM homolog, AtHAM4, exhibits overlapping function with AtHAM1 and AtHAM2 in promoting shoot indeterminacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells.

Plant shoot development depends on the perpetuation of a group of undifferentiated cells in the shoot apical meristem (SAM). In the Petunia mutant hairy meristem (ham), shoot meristems differentiate postembryonically as continuations of the subtending stem. HAM encodes a putative transcription factor of the GRAS family, which acts non-cell-autonomously from L3-derived tissue of lateral organ pr...

متن کامل

Tomato HAIRY MERISTEM genes are involved in meristem maintenance and compound leaf morphogenesis

The HAIRY MERISTEM (HAM) genes function in meristem maintenance but play minor roles in the morphogenesis of a simple leaf that is determinate. Here, we functionally analyzed HAM genes in tomato and uncovered their involvement in compound leaf morphogenesis. Tomato encodes three HAM homologs, of which SlHAM and SlHAM2 (SlHAMs) are guided for cleavage by microRNA171 and are abundant in the shoot...

متن کامل

HAM proteins promote organ indeterminacy

HAIRY MERISTEM (HAM) proteins, members of the GRAS family of transcriptional regulators, are essential for maintenance of indeterminate growth in flowering plant shoots, loss-of-function ham mutants exhibiting a strikingly novel phenotype of shoot meristem arrest and differentiation. Specific cellular/molecular functions of HAM proteins underlying meristem maintenance are unknown. In this revie...

متن کامل

HAM proteins promote organ indeterminacy But how?

HAIRY MERISTEM (HAM) proteins, members of the GRAS family of transcriptional regulators, are essential for maintenance of indeterminate growth in flowering plant shoots, loss-of-function ham mutants exhibiting a strikingly novel phenotype of shoot meristem arrest and differentiation. Specific cellular/molecular functions of HAM proteins underlying meristem maintenance are unknown. In this revie...

متن کامل

Control of floral meristem determinacy in petunia by MADS-box transcription factors.

The shoot apical meristem (SAM), a small group of undifferentiated dividing cells, is responsible for the continuous growth of plants. Several genes have been identified that control the development and maintenance of the SAM. Among these, WUSCHEL (WUS) from Arabidopsis (Arabidopsis thaliana) is thought to be required for maintenance of a stem cell pool in the SAM. The MADS-box gene AGAMOUS, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 2011